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ABSTRACT

This study investigates the factors controlling the

soil CO2 and CH4 fluxes and quantifies annual

cumulative soil respiration (RS), heterotrophic res-

piration (RH), and soil CH4 emission in an un-

drained forest on tropical peat by continuous

measurement using an automated chamber system

for 2 years. Daily mean soil CO2 flux was increased

by lowering groundwater level (GWL), which

indicates oxidative peat decomposition is promoted

by the enhancement of aeration. On the other

hand, soil CH4 flux showed a bell-shaped rela-

tionship with GWL, which suggested that the

development of anaerobic conditions promoted

CH4 production by the rise in GWL, whereas

hydrostatic pressure suppressed CH4 diffusion

when the GWL was above the peat surface. Mean

annual gap-filled CO2 emissions were 926 ± 610

and 891 ± 476 g C m-2 y-1 (mean ± 1 SD) for RS

(n = 10) and RH (n = 6), respectively, and were not

significantly different from each other. The annual

RH in this study was similar to that of previous

studies despite the higher annual mean GWL in

this study, possibly due to the inclusion of litter

decomposition in contrast to most of the previous

studies in tropical peatland. Mean annual gap-filled

CH4 emission was 4.32 ± 3.95 g C m-2 y-1

(n = 9), which was the high end of the previous

studies in tropical peatland due to higher annual

mean GWL in this study. In conclusion, RS was

lower and CH4 emission was higher in the un-

drained peat swamp forest than those previously

reported for drained and disturbed forests on

tropical peat.
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HIGHLIGHTS

� Soil CO2 and CH4 fluxes were continuously

measured in undrained tropical peat forest.

� CO2 flux was promoted by low GWL, and CH4

flux was maximized at GWL near surface.

� CO2 flux was lower and CH4 was higher than

previously reported in undrained forests.

INTRODUCTION

Carbon dioxide (CO2) and methane (CH4) are the

most and second most important anthropogenic

greenhouse gases, respectively, and CH4 has a 28

times greater global warming potential than CO2

over a 100-year time horizon (IPCC 2013). CH4

emission from wetland including peatland has an

important role in the global CH4 budget with large

spatiotemporal variations (IPCC 2013). Therefore,

it is important to understand the factors controlling

CO2 and CH4 fluxes in peatland to provide accurate

estimates of annual emissions (Sjögersten and

others 2014).

Peatland covers only 3% of the global terrestrial

area, but it is an important carbon (C) reservoir

because peatland has accumulated about one-third

of global soil carbon stocks (Page and others 2011;

Lawson and others 2014; Dargie and others 2017).

The large C stocks in peatlands result from net C

accumulation during the Holocene (Page and oth-

ers 2004; Smith and others 2004; Yu and others

2010), and, in tropics, it is recognized that intact

peatlands coexisting with swamp forests can func-

tion as contemporary C sinks (Kiew and others

2018). However, tropical peatlands have been re-

claimed rapidly from natural forest to oil palm

plantations, Acacia plantations, and smallholders’

farmland in the last three decades (Miettinen and

others 2017). This land-use change involves drai-

nage which, in tropical peatland, results in the

enhancement of CO2 emission from peat surface

and in the weak uptake of CH4 (Inubushi and

others 2003; Arai and others 2014), which has

caused these ecosystems to change from net C sinks

to net C sources (Dommain and others 2014;

Miettinen and others 2017). Nevertheless, studies

on CO2 and CH4 emissions are still limited in the

undrained tropical peat swamp forest (Hirano and

others 2009; Wright and others 2013; Teh and

others 2017) compared with drained peat forest

(Inubushi and others 2003; Hadi and others 2005;

Murakami and others 2005; Jauhiainen and others

2008, 2014; Melling and others 2013; Sangok and

others 2017). Thus, evaluating the scale of the CO2

and CH4 emissions from undrained pristine swamp

forest on tropical peat is necessary to provide ref-

erence data sets to better quantify the impact of

land-use change on C emissions.

Soil respiration (RS) is measure of the total CO2

emissions from the soil surface, which consists of

heterotrophic respiration (RH) and root respiration.

In peatland ecosystems, oxidative peat decomposi-

tion dominates RH, especially when the peatland is

drained (Toma and others 2011; Jauhiainen and

others 2012). Studies on RS have been widely

performed in tropical peatland by using the

chamber method (Inubushi and others 2003; Mel-

ling and others 2005b; Murakami and others 2005;

Jauhiainen and others 2008; Sundari and others

2012; Arai and others 2014; Comeau and others

2016; Ishikura and others 2017). On the other

hand, RH results from microbial decomposition of

aboveground leaf litter, belowground root litter,

and soil organic matter. Therefore, along with RS,

the measurement of RH is important because RH

represents C loss from the peat soil. However,

studies on RH are still limited compared with RS in

tropical peatland (Hirano and others 2014; Jauhi-

ainen and others 2014; Wakhid and others 2017;

Ishikura and others 2018), especially in natural

forests (Itoh and others 2017). Also, studies on soil

CH4 emissions are limited in tropical peatland

compared with boreal peatland. In previous stud-

ies, soil CH4 flux was mostly measured monthly for

more than one year (Inubushi and others 2003;

Furukawa and others 2005; Melling and others

2005a) or was measured at shorter intervals but for

less than one year (Hadi and others 2005; Adji and

others 2014) in tropical peatland using manual

chamber systems. Ecosystem-scale CH4 flux has

been evaluated recently in tropical peatland by

using eddy covariance method (Sakabe and others

2018; Wong and others 2018). However, factors

controlling CH4 flux are not understood well in

tropical peatland yet, and the spatiotemporal vari-

ation of CH4 flux is high (Sjögersten and others

2011).

Continuous measurement of soil CO2 and CH4

fluxes over one year can detect both diurnal and

seasonal flux variations following environmental

variations, which will contribute to an improved
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understanding of environmental responses of soil

CO2 and CH4 fluxes. Moreover, spatial evaluation

may increase the accuracy of the soil CO2 and CH4

emissions. Therefore, we measured RS, RH and soil

CH4 fluxes continuously using an automated

chamber system for 2 years in an undrained swamp

forest on tropical peat. The objectives of this study

are (1) to clarify the controlling factors of soil CO2

and CH4 fluxes and (2) to quantify annual soil CO2

and CH4 emissions in an undrained forest on

tropical peat.

MATERIALS AND METHODS

Site Description

The field study was conducted in an undrained

swamp forest, which is classified as ‘‘Alan Batu

Forest’’, in Maludam National Park (1�27¢N,
111�9¢E), Sarawak, Malaysia (Figure 1). Mean an-

nual air temperature and precipitation between

1998 and 2016 were 26.6 ± 0.3 �C and

3161 ± 471 mm y-1 (mean ± 1 standard devia-

tion (SD)), respectively, at Lingga meteorological

station (Department of Irrigation and Drainage

Sarawak) about 12 km away from the study site.

Although the forest had been selectively logged, it

has been conserved as a national park since 2000

(Melling 2016). An experimental area was estab-

lished 4.5 km away from the Batang Lupar River

and about 20 m away from an eddy flux tower. The

dominant species is Shorea albida Sym., and aerial

and buttress roots are well developed. Tree density

was 1173 trees ha-1 (diameter at breast height

(DBH) > 5 cm), and plant area index was

6.4 m2 m-2. The understory vegetation consisted

of pitcher plant (Nepenthes ampullaria Jack), and

herbs and shrubs (Uraria crinita (L.) Desv. ex DC.,

Scleria sumatrensis Retz, Pandanus helicopus Kurz,

and Aglaonema nitidum (Jack) Kunth.). The forest

floor shows microtopography, and the elevation

differences are generally 30–40 cm between the top

of hummock and the base of hollows. Hummocks

are mainly overgrown with dense tree roots. The

soil is classified as a Fibric Histosol (IUSS Working

Group WRB 2015) with peat thickness of 10 m.

Table 1 shows soil physicochemical properties in

the experimental area.

Experimental Design and Chamber
Measurement

Six trenched plots were established in the experi-

mental area in November 2014 for measurement of

RH. Each plot was a square of 40 cm by 40 cm with

stainless-steel plates inserted into a depth of 80 cm,

which is deeper than the depth distribution of fine

roots. Also, ten non-trenched plots were estab-

lished for RS. Two non-trenched plots and two

trenched plots were set on hummocks, and the
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Figure 1. Map of the study site.
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other plots were set in hollows. The understory

vegetation was removed from these plots.

An automated chamber system was installed in

August 2015, 9 months after trenching. The system

consists of 16 chambers, a greenhouse gas analyzer

(Ultraportable Greenhouse Gas Analyzer 915-0011,

Los Gatos Research, Inc., San Jose, California,

USA), a programmable data logger (CR1000,

Campbell Scientific Inc., Logan, Utah, USA), and

solenoid valves (Hirano and others 2009; Ishikura

and others 2018). Chambers were made of an

opaque polyvinyl chloride (PVC) cylinder with a

height of 40 cm and an inner diameter of 25 cm. A

chamber was inserted 2–3 cm deep into the soil. An

opaque PVC lid attached to the chamber top

opened and closed vertically under the control of

the data logger. Each chamber closed for 225 s (s)

one after another in an hourly rotation, and the

headspace air of the closed chamber was pumped

into the gas analyzer. CO2, CH4, and water vapor

concentrations were measured at 10-s intervals and

recorded in the data logger. Although the mea-

surement began in August 2015, data from October

2015 to October 2017 was only used in this study,

because the decomposition of cut roots by trench-

ing left in the trenched plots was expected to

influence soil CO2 and CH4 fluxes for several

months after trenching (Hanson and others 2000;

Comeau and others 2016).

Soil CO2 and CH4 fluxes (F; lmol m-2 s-1 for

CO2 or nmol m-2 s-1 for CH4) were calculated

from the rate of change in CO2 or CH4 concentra-

tion in each chamber headspace during 90–220 s

after chamber closing in consideration of dilution

by water vapor using the following equation (Jassal

and others 2012; Harazono and others 2015):

F ¼ PH

RTair 1� sWð Þ
dsC

dt
ð1Þ

where P is the standard air pressure (101.325 kPa),

H is the aboveground height of a chamber, R is the

gas constant (8.314 Pa m3 K-1 mol-1), Tair is air

temperature (K), dsc/dt is the rate of change in CO2

or CH4 mixing ratio [lmol CO2 (mol dry air)-1 s-1

or nmol CH4 (mol dry air)-1 s-1], and sw is water

vapor mixing ratio [mol H2O (mol dry air)-1],

respectively. Mixing ratio was calculated from gas

concentration (c; lmol CO2 mol-1 or nmol CH4

mol-1) and water vapor concentration (w; mol

H2O mol-1) as follows: sC= c/(1 - w) and sW= w/

(1 - w). The dsC/dt was determined by the least-

squares method.

The quality of flux data was controlled as follows:

1. Significant slope: Pearson’s correlation coeffi-

cient of the rates of change in mixing ratio (dsC/

dt) should be higher than 0.661376 (P < 0.01,

n = 14);

2. Stationarity: the rates of change in mixing ratio

from 90 to 150 s and 160 to 220 s after lid clo-

sure were calculated separately. The difference

between the mean of the two rates and the rate

for the whole period (90–220 s) should be less

than 30% (Aguilos and others 2013);

3. Initial concentration: initial concentrations

should be between 350 and 1000 lmol mol-1

for CO2 and 1600 and 3000 nmol mol-1 for

CH4, respectively.

4. Outlier removal: boxplot outliers on each date

were removed using a 15-days moving window.

In total, 26% of data were missed in this study

period mainly because of power problems and

malfunction of the gas analyzer. After the quality

control, 55 and 45% of data were finally available

for CO2 and CH4 fluxes, respectively (Table S1).

Soil CO2 fluxes from the non-trenched and tren-

ched plots correspond to RS (n = 10) and RH

(n = 6), respectively. Soil CH4 flux was calculated

for both non-trenched and trenched plots. Because

litter fall accumulated in all chambers, the CO2 and

CH4 emissions through litter decomposition were

included in RS, RH, and soil CH4 emissions,

respectively, though the amount of litter fall was

not measured in this study.

Environmental Properties

Precipitation was measured at a height of 1 m in an

open space about 20 m away from the experi-

mental area. Precipitation data at Lingga meteoro-

logical station was alternatively used to fill missing

data due to power failure. Friction velocity (u*,

m s-1) was measured at a height of 41 m above the

forest canopy using a sonic anemometer (CSAT3,

Table 1. Soil Physicochemical Properties in 0–
30 cm Depth (0–10 cm Depth for Bulk Density)

Properties Mean ± 1 SD (n)

Bulk density (Mg m-3) 0.10 ± 0.02 (11)

Total C (%) 52.5 (3)

Total N (%) 1.7 (3)

Ash content (%) 0.9 (3)

Soil pH (H2O) 3.5 (3)

CEC (cmolC kg-1) 25.0 (3)

Base saturation (%) 69.6 (3)

CEC cation exchange capacity.
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Campbell Scientific Inc.) (Wong and others 2018).

Here, we assumed that the atmospheric turbulence

near the soil surface is linked to that above the

canopy. Thus, the u* was used as an index of the

atmospheric turbulence near the soil surface.

Air and soil temperatures (5 cm depth) were

measured in the same two chambers in the non-

trenched plots using handmade thermocouple

thermometers (type T). Groundwater level (GWL,

m) was measured at a hollow using a piezometer

(HTV-050KP, Sensez, Tokyo, Japan), which is

shown as the distance between ground and water

surfaces with positive values representing flooding.

Half-hourly means of these variables were recorded

to the same data logger as for the chamber system.

Missing GWL data were gap-filled from precipita-

tion on a daily basis using a tank model (He and

Inoue 2015). The elevation difference between the

GWL measurement position and each plot was

surveyed. GWL at each plot was determined

(GWLp) using the elevation difference. If GWLp was

positive, H in Eq. (1) was corrected as H - GWLp.

Undisturbed soil cores (100 cm3) were taken

from 0 to 10 cm depth every month with a stain-

less-steel soil core cylinder, and bulk density

(Mg m-3) was determined by measuring the oven-

dried weight of the cores for more than 48 h at

105 �C. Disturbed soil samples (0–10 cm depth)

were taken in October 2012 in three replications,

and sieved through 2-mm meshes after air-drying.

Total C and nitrogen (N) contents (%) were ana-

lyzed by the dry combustion method (TruMac CN,

LECO Corporation, St. Joseph, Michigan, USA).

Ash content (%) was analyzed by loss-on-ignition

(TGA701, LECO Corporation) at 800 �C for more

than 1 h. Soil pH (1:2.5 H2O) was measured using a

digital pH meter (827 pH Lab, Metrohm AG, Her-

isau, Switzerland). Cation exchange capacity (CEC)

and exchangeable cations (Na+, K+, Mg2+, and

Ca2+) were determined by semi-micro Schollen-

berger’s percolation method (Kamewada 1997)

using a steam distillation method for NH4
+ and

using an inductively coupled plasma optical emis-

sion spectrometer (ICP-OES; Optima 7300 DV,

PerkinElmer, Waltham, Massachusetts, USA) for

base cations, respectively. Base saturation was cal-

culated as the sum of the exchangeable cations

divided by the CEC.

Data Analysis

We applied nonlinear mixed-effects modeling

(lme4 package of R software; Bates and others

2015) to examine the dependencies of log-trans-

formed daily mean soil CO2 flux was fitted by the

following bi-logistic equation for each of the non-

trenched and trenched plots:

ln CO2 fluxð Þ ¼ a1p

1þ exp b1 � GWLp � c1p
� �� �

þ a2p

1þ exp b2 � GWLp � c2p
� �� �þ dp

ð2Þ

where GWLp is the explanatory variable, a1p, a2p,

b1, b2, c1p, c2p, and dp are regression coefficients of

pth plot (p = 1–16), respectively. The regression

coefficients a1p, a2p, c1p, c2p, and dp were described

as follows:

a1p ¼ a1 þ ea1p; a2p ¼ a2 þ ea2p; c1p ¼ c1 þ ec1p; c2p
¼ c2 þ ec2p; dp ¼ �d þ edp

where a1,a2, c1, c2, and �d are the fixed-effect coef-

ficients (average coefficients among plots) and �a1p,
�a2p, �c1p, �c2p, and �dp are the random-effect coeffi-

cients, respectively.

Daily mean soil CH4 flux was fitted by GWL

using the following Gaussian equation:

CH4 flux ¼ a3p � exp b3 � GWLp � c3p
� �2h i

ð3Þ

where GWLp is the explanatory variable, a3p, b3,

and c3p are regression coefficients of pth plot,

respectively. The regression coefficients a3p and c3p
were described as follows:

a3p ¼ a3 þ ea3p; c3p ¼ c3 þ ec3p

where a3, and c3 are the fixed-effect coefficients,

and �a3p and �c3p are the random-effect coefficients,

respectively. These regression coefficients of Eqs. 2

and 3 were fitted by the residual maximum likeli-

hood (REML) estimation method, and the good-

ness-of-fit was evaluated with the coefficient of

determination (R2).

The daily mean soil CO2 and CH4 fluxes were

gap-filled using the regression equations (Eqs. 2

and 3, respectively), and the daily fluxes were

summed up to annual emissions for each chamber

from October 2015 to September 2016 (2015/16)

and October 2016 to September 2017 (2016/17),

respectively.

To evaluate the spatial average of annual emis-

sions, soil CO2 and CH4 emissions were spatially

interpolated as follows. Firstly, the experimental

area was gridded at 50-cm, and spatial dependence

of relative elevation was modeled using variograms

fitted to a linear model. The relative elevation was

spatially interpolated by ordinary kriging method.

Secondly, nonlinear regression analysis of the 2-

years mean annual RS, RH, and CH4 emissions were
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evaluated using relative elevation at each chamber

position. Lastly, annual RS, RH, and CH4 emissions

were interpolated at each grid by using the

regression equations of relative elevation. All the

data analyses were conducted using R software (R

Core Team 2017).

RESULTS

Environmental Properties

This study site, even though it is relatively flat, has

a peat surface microtopography (hollows and

hummocks) with a relative elevation distance of

between -4.5 and 6.5 cm at the chamber positions

(Figure 1B). The soils showed the typical charac-

teristics of ombrotrophic tropical peatland with low

bulk density, high total C content, and acid soil pH

(Table 1). Also, a high soil C/N ratio and low CEC

suggest a low degree of peat decomposition at the

study site.

The dry season is typically from May to August,

and the rainy season is from October to February in

this region (Chang and others 2005). However,

precipitation was lower than the average from

October 2016 to February 2017 (Figure 2A), which

resulted in lower annual precipitation in 2016/17

(2524 mm y-1) than in 2015/16 (3088 mm y-1).

Daily mean GWL varied between - 0.19 m in

September 2015 and 0.25 m in January 2016

(Figure 2B) with annual means of 0.01 in 2015/16

and of - 0.01 m in 2016/17. Non-flooding periods

were longer in 2016/17 than in 2015/16 because of

less precipitation in 2016/17. Daily mean soil

temperature varied between 25.4 and 28.0 �C
without clear seasonal change (Figure 2C).

Diurnal Change of Soil Carbon Dioxide
and Methane Fluxes

Both air and soil temperatures in the chambers

showed a diurnal change (Figure 3A). The air

temperature was at a minimum at 7 h and at a

maximum at 14 h. Soil temperature showed a

minimum at 10 h and a maximum at 20 h, which

were delayed by 3–4 h from those of air tempera-

ture. The soil temperature was higher than the air

temperature in the nighttime by 1.9 �C on average.

The u* above the canopy was also higher in the

daytime than in the nighttime. In contrast, soil CO2

and CH4 fluxes were higher in the nighttime (Fig-

ure 3B).

To investigate the effect of moisture, tempera-

ture, and atmospheric turbulence on the diurnal

change in soil CO2 and CH4 fluxes, standard least-

squares multiple regressions were carried out

without stepwise selection for hourly soil CO2 and

CH4 fluxes, respectively, with predictors of GWL,

soil temperature, DTair-soil (the difference between

air and soil temperatures), and u*. All the predic-

tors were significant for soil CO2 fluxes both in the

non-trenched and trenched plots (Table 2). GWL

showed the greatest standardized coefficient for

both plots, followed by DTair-soil. On the other

hand, R2 value was low for the regression model of

soil CH4 fluxes though all the predictors were sig-

nificant due to the large sample sizes. GWL showed

the greatest standardized coefficient for soil CH4

fluxes as well as CO2 fluxes. Because the diurnal

change in GWL was not expected, and the diurnal

range of soil temperature was small (Figure 3A),

hourly soil CO2 and CH4 fluxes were plotted against

DTair-soil or u* (Figure 4). Both CO2 and CH4 fluxes

decreased as DTair-soil increased when air tempera-

ture was higher than soil temperature (that is,

DTair-soil < 0 �C). Similarly, both fluxes decreased

as u* increased.

Seasonal Change of Soil Carbon Dioxide
and Methane Fluxes

To exclude biases derived from the diurnal change

(Figure 3), daily mean soil CO2 and CH4 fluxes

were calculated only when the number of available

data was larger than six both in the daytime (7–

18 h) and nighttime (19–6 h) on each day. The

daily mean RS and RH were lower in the rainy

season and higher in the dry season (Figures 5A,

B). In contrast, the daily mean soil CH4 flux was

higher in the rainy season and lower in the dry

season (Figure 5C). In November 2015, RS and RH

increased (Figures 5A, B) just after the drastic rise

in GWL from -0.17 m to +0.19 m (Figure 2B).

Excluding high CO2 fluxes in November 2015,

Eq. 2 was significantly fitted to RS and RH with

GWLp (Figure 5A, B).

ln RSð Þ ¼ 3:61

1þ exp 30:7� GWLp � 0:001
� �� �

þ 0:33

1þ exp 103� GWLp þ 0:06
� �� �

�1:34 R2 ¼ 0:85; P<0:001
� �

ln RHð Þ ¼ 3:04

1þ exp 53:3� GWLp þ 0:012
� �� �

þ 2:36

1þ exp 84:9� GWLp þ 0:08
� �� �

�1:27 R2 ¼ 0:88; P<0:001
� �
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This result showed that soil CO2 flux increased as

GWLp lowered (Figure 6A, B). The daily mean RS

and RH were similar to each other when GWL was

lower than -0.1 m (Figure 6A), whereas RS was

higher than RH when GWL was higher than

-0.1 m (Figure 6B), which was the typical range of

GWL in this site. Also, Eq. (3) was significantly

fitted to daily mean soil CH4 flux with GWLp.

CH4 ¼ 13:5� exp �67:2� GWLp � 0:05
� �2� �

R2 ¼ 0:48; P<0:001
� �

The result indicates that soil CH4 flux was the

maximum when the GWL was + 0.05 m (Fig-

ure 6C). The fitting parameters shown above are

fixed-effects coefficients so that these equations

represent the average relationships with GWL.

Random-effects coefficients of each plot, which

represent the deviation from the fixed-effects

coefficient, are also calculated but not shown for

simplicity.

RH/RS ratio showed a clear seasonal variation

(Figure 7). The mean ratio in the rainy season was

61%, whereas the mean ratio in the dry season was

high, especially from August to November in 2016

when the ratio was higher than 100% (Figure 7).

Annual Soil Carbon Dioxide
and Methane Emissions

Daily mean soil CO2 and CH4 fluxes were gap-filled

for each plot from daily mean GWLp using the

regression models (Eqs. 2 and 3, respectively), and

annual cumulative emissions were calculated for

each chamber. The annual CO2 emission was sig-

nificantly fitted by a bell-shaped equation using

relative elevation for both non-trenched and tren-

ched plots (Figure 8A). Also, log-transformed CH4

emission showed a significant negative correlation

with relative elevation (Figure 8B). Annual soil

CO2 emission was slightly larger in the non-tren-

ched (926 g C m-2 y-1) than in the trenched plots
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(891 g C m-2 y-1), though it was not significant,

even if the outlier of the highest relative elevation

(Figure 8A) was excluded (Table 3). Likewise, its

interannual variation was not significant. Annual

soil CH4 emission was larger in the non-trenched

(3.92 g C m-2 y-1) than in the trenched plots

(2.80 g C m-2 y-1), which was not significant be-

cause of its large spatial variation (SD). Also, its

interannual variation was not significant (Table 3).

Soil CO2 (RS and RH) and CH4 emissions were

spatially interpolated (Figure 9) by kriged relative

elevation (Figure 1B). RH was estimated by using

regression equation for RS when relative elevation

was higher than 1.84 cm because there was no

measurement in higher relative elevation. Spatial

means of RS and RH were slightly higher than

simple means (Table 3). Even if the interpolated

CO2 emissions in higher relative elevation

(> 1.84 cm) were excluded, the spatial means of

RS (1096 g C m-2 y-1) and RH (881 g C m-2 y-1)

were changed only 1.4–4.2% from the whole spa-

tial means. On the other hand, spatial mean of

CH4 emission was 32% lower than simple mean

(Table 3).

DISCUSSION

Factors Controlling Soil Carbon Dioxide
and Methane Fluxes

Diurnal Changes

Soil CO2 and CH4 fluxes decreased in the daytime

and increased in the nighttime (Figure 3B), and

hourly soil CO2 and CH4 fluxes were significantly

increased as DTair-soil and u* decreased (Table 2,

Figure 4). These negative relationships were also

found in an oil palm plantation on tropical peat

(Ishikura and others 2018). In the negative DTair-soil
conditions (Tair < Tsoil) during the nighttime, soil

CO2 and CH4 effluxes could have been enhanced

by thermal convection in the porous soils (Ganot

and others 2014). In addition, atmospheric turbu-

lence can decrease diffusive CO2 and CH4 effluxes

in the chambers (Lai and others 2012; Görres and

others 2016). Moreover, CH4 might have been ra-

pidly oxidized in windy conditions even during

flooding, because oxygen would be supplied into

the surface water by wind (Poindexter and Variano

2013). However, the effect of atmospheric turbu-

lence (u*) on soil CO2 and CH4 fluxes by the closed

chamber method was estimated to be 2–6%, which

was much smaller than the difference of fluxes

between the daytime and nighttime (Table S2).

Table 2. Multiple Regression Analysis for Soil CO2 (lmol m-2 s-1) and CH4 (nmol m-2 s-1) Fluxes Using
GWL (Groundwater Level, m), Soil Temperature (�C) at a Depth of 5 cm, DTair-soil (Difference Between Air
and Soil Temperature, �C), and u* (Friction Velocity, m s-1)

Predictor Coefficient Std. coeff. P value R2

ln(RS) (n = 66,746) Intercept - 2.68 < 0.001 0.49

GWL - 11.4 0.64 < 0.001

Soil temperature 0.089 0.04 < 0.001

DTair-soil - 0.19 0.19 < 0.001

u* - 0.23 0.03 < 0.001

ln(RH) (n = 39,221) Intercept - 4.03 < 0.001 0.64

GWL - 15.8 0.75 < 0.001

Soil temperature 0.115 0.05 < 0.001

DTair-soil - 0.27 0.21 < 0.001

u* - 0.11 0.01 < 0.001

CH4 flux (n = 86,088) Intercept - 76.1 < 0.001 0.03

GWL 43.4 0.14 < 0.001

Soil temperature 3.29 0.09 < 0.001

DTair-soil - 0.95 0.06 < 0.001

u* - 3.05 0.02 < 0.001

RS: soil respiration (CO2 flux in the non-trenched (NTR) plots).
RH: heterotrophic respiration (CO2 flux in the trenched (TR) plots).
‘Std. coeff.’ represents the standardized regression coefficient. R2 shows the coefficient of determination of the regression model.
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Thus, the underestimation by the atmospheric

turbulence might be negligible.

Soil CO2 and CH4 fluxes usually increase with

soil temperature. However, the effect of soil tem-

perature at 5 cm depth on soil CO2 and CH4 fluxes

were not clear compared with other environmental

variables (Table 2). In this study, hourly fluxes

were higher in the nighttime when the soil tem-

perature was lower than in the daytime. Therefore,

the positive effect of soil temperature itself on

fluxes would have been masked by the nighttime

thermal convection.

Seasonal Change

Daily mean soil CO2 efflux increased as GWL

lowered (Figure 6A, B) like in previous studies

(Inubushi and others 2003; Melling and others

2005b; Hirano and others 2009; Sundari and others

2012; Arai and others 2014; Ishikura and others

2017). Lower GWL enhances soil aeration, which

promotes oxidative peat decomposition and gas

diffusion in the soil. However, high soil CO2 fluxes

were found in November 2015 (Figure 5) just after

the rapid rise in GWL from - 0.04 to + 0.19 m over

4 days (Figure 2B). The high CO2 flux might be

due to a ‘‘rewetting effect’’ (Birch 1958; Ishikura

and others 2017), resulting from the following

phenomena: (1) soil microbes killed during GWL

drawdown were easily decomposed during subse-

quent rewetting (Marumoto and others 1977;

Fraser and others 2016), (2) soil microbial activity

is enhanced by the rewetting despite the

unchanging population size (Placella and others

2012; Fraser and others 2016), and (3) the rise in

GWL and soil moisture can physically displace CO2

that accumulated in soil air during the dry period

(Huxman and others 2004). The rewetting effect

can continue for from a few hours to a few weeks

(Borken and Matzner 2009; Bowling and others

2011). The high CO2 fluxes lasted for 15 days in

this study.
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Soil CH4 flux showed a bell-shaped relationship

with GWL and peaked at 0.05 m (Figure 6C).

Higher GWL promoted CH4 production and sup-

pressed CH4 oxidation through thickening the soil

anaerobic layer (Dise and others 1993; Jauhiainen

and others 2008; Olefeldt and others 2013; Susi-

lawati and others 2016). However, if GWL rose

above 0.05 m, CH4 efflux decreased with flooding

depth. The decrease of CH4 efflux was found in

studies of paddy field (Yagi and others 1996; Min-

amikawa and Sakai 2006) and boreal peatland

(Pelletier and others 2007; Turetsky and others

2014), because gas diffusion is restricted more as

hydrostatic pressure increases along with increas-

ing flooding depth. Furthermore, the standing

water can enhance CH4 oxidation because it would

increase dissolved oxygen and prolong traveling

time of CH4 to the atmosphere (Strack and others

2004). The microbiological control on CH4 pro-
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duction/oxidation and physical control on CH4

diffusion result in the bell-shaped relationship be-

tween soil CH4 efflux and GWL.

Annual Cumulative Emissions

Soil Carbon Dioxide Emission

The annual soil CO2 emissions were not signifi-

cantly different between RS and RH in this study

(Table 3). Although the significant difference was

not found between RS and RH, the RH/RS ratio was

greater than 100% from July through December

2016 (Figure 7). The higher RH than RS is one of

the largest concerns of the trenching method due to

the additional CO2 emission through the oxidative

decomposition of dead roots remaining in the

trenched plots. To exclude the additional CO2

emissions, the trenching was made one year prior

to the start of the measurement. Some studies have

applied the trenching method to separate RH from

RS in several land uses on tropical peat (Comeau

and others 2016; Itoh and others 2017; Wakhid and

others 2017; Ishikura and others 2018). In these

studies, the measurement of soil CO2 flux started

5–8 months after the trenching, and the trenched

plots experienced lower GWL than - 0.5 m before

the measurement. The low GWL might have

caused the dead roots to undergo considerable

decomposition before the measurement started.

However, in this study, GWL remained high at

above - 0.2 m after trenching. The higher GWL

probably restrained the oxidative decomposition of

dead roots, and the decomposition could have

continued even during the measurement. As a re-

sult, RH might be overestimated in this study.

Annual RS and RH are significantly fitted by a

bell-shaped equation using relative elevation (Fig-

ure 8A). This result suggests that soil CO2 emission

was promoted by drier conditions up to 1.3 cm of

relative elevation. The higher soil CO2 emission in

hummocks than in hollows has also been reported

in other tropical peat forests (Hirano and others

2009; Sundari and others 2012). However, the

exceptionally low outlier was measured at the

highest position on a hummock (Figure 8A), which

would increase the uncertainty of the bell-shaped

relationship in higher relative elevation. Generally,

soil bulk density is lower in hummocks than in

hollows in tropical peat swamp forest (Lampela and

others 2014) because of a vacant zone and root

development in peat soils (Melling 2016). Thus, the

amount of unsaturated peat soil might be smaller at

the chamber position, resulting in the lower CO2

emission. Moreover, lateral gas diffusion might not

be negligible in a vacant zone in peat soils.

Soil Methane Emission

Annual CH4 emission from the peat surface (non-

trenched plots) was 3.92 ± 3.94 g C m-2 y-1, and

it increased to 4.32 ± 3.95 g C m-2 y-1 without

the outlier (Table 3). Aerial roots of tree species

living in tropical peat swamp forest can provide

oxygen to the upper peat layer and enhance CH4

oxidation (Pangala and others 2013; Adji and oth-

ers 2014). In addition, the insufficient decomposi-

tion of dead roots in the trenched plots could

provide substrates for CH4 production. For these

reasons, soil CH4 emission is expected to be higher

in the trenched plots, where no living roots exist.

However, the CH4 emission was unexpectedly

lower in the trenched plots than in the non-tren-

RS = 1575exp(−0.049(Elev − 1.33)2)
R2 = 0.59, P < 0.05

RH = 2146exp(−0.019(Elev − 5.67)2)
R2 = 0.99, P < 0.001
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ched plots (Table 3), possibly due to the enhance-

ment of CH4 production by root exudates (Girkin

and others 2018) and imperceptible gaps between

the peat and the stainless plates used for trenching.

In this study, relatively small trenching plots of

0.4 m 9 0.4 m were set. Oxygen might have been

supplied into the peat through the gaps, and con-

sequently, the peat might have been aerated in

some trenched plots. Also, CH4 produced in the

peat might have leaked to the atmosphere through

the gaps. Both the peat aeration and leakage

potentially decrease the soil CH4 emission. Simi-

larly, soil CO2 emission might have also been af-

fected by the gaps.

Soil CH4 emission was significantly promoted by

wetter conditions (Figure 8B). The higher CH4

emission in hollows than in hummocks has also

been reported in other tropical peat forests

(Jauhiainen and others 2008; Hirano and others

2009). The simple mean of CH4 emissions was

higher than the spatial mean (Table 3) probably

because of the bias of the number of samples be-

tween hollows and hummocks. On the other hand,

the highest CH4 emission was obtained when rel-

ative elevation was at a midpoint (Figure 8B).

Therefore, other factors controlling CH4 fluxes

might be important in this study site, such as

hydrostatic pressure (Pelletier and others 2007;

Turetsky and others 2014), increased oxidation in

standing water (Strack and others 2004), and

nutrient status and chemical composition of the

peat (Wright and others 2011; Könönen and others

2018), especially in deeper soil profiles where CH4

is produced.

Wong and others (2018) reported that annual

CH4 emission was 7.5–10.8 g C m-2 y-1, which

was measured above the forest canopy by the eddy

covariance method in the same site as this study.

The ecosystem-scale CH4 emission was 2–3 times

higher than our soil CH4 emission (Table 3). Firstly,

the soil CH4 effluxes might miss the ebullition

fluxes, because spike-like effluxes were removed as

outliers through the quality control of stationarity

(Table S1). Secondly, soil CH4 is mediated by aerial

roots (Adji and others 2014) and emitted from tree

stems in tropical peat swamp forest (Pangala and

others 2013). Furthermore, Kirschke and others

(2013) reviewed that CH4 emissions from nests of

termites can account for 3.2% of globally natural

CH4 sources, and various types of termite make

nests aboveground here in Maludam National Park

(Vaessen and others 2011). These additional CH4

effluxes could not be measured by the chamber

method on the ground. The comparison between

the chamber and eddy fluxes suggests that the T
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aboveground emissions contributed more to the

total ecosystem CH4 emission in this site.

Comparison with Previous Studies

The annual RS (Table 3) were lower than previous

studies (990–4200 g C m-2 y-1) in tropical peat-

land (Inubushi and others 2003; Hirano and others

2009; Jauhiainen and others 2012; Sundari and

others 2012; Melling and others 2013; Dariah and

others 2014; Husnain and others 2014; Wakhid and

others 2017; Ishikura and others 2018) except for

264 g C m-2 y-1 measured in a lowland paddy

(Furukawa and others 2005). The RS was signifi-

cantly promoted by lower GWL (Figure 10A),

suggesting that the lower RS was partly due to the

higher GWL in this site.

The annual RH (Table 3) was within the range of

478–993 g C m-2 y-1 measured in other tropical

peat swamp forest (Melling and others 2013;

Jauhiainen and others 2014; Itoh and others 2017)

and the range of 372–3784 g C m-2 y-1 measured

in other disturbed tropical peatlands (Jauhiainen

and others 2012; Melling and others 2013; Dariah

and others 2014; Hirano and others 2014; Husnain

and others 2014; Jauhiainen and others 2014; Itoh

and others 2017; Wakhid and others 2017; Ishikura

and others 2018). The RH was also significantly

promoted by lower GWL (Figure 10B), but the RH

was not low compared to other RH with similar

annual mean GWL. The RH in this study might be

overestimated by the remaining trenched roots as

discussed above. Furthermore, the RH included lit-

ter decomposition as well as oxidative peat

decomposition, whereas the previous studies ex-

cluded litter during the measurement except for

several studies (Jauhiainen and others 2012, 2014;

Melling and others 2013). Sjögersten and others

(2014) reviewed that annual litter fall is

333 ± 96 g C m-2 y-1 in tropical peat swamp for-

ests located in Brazil, Africa, and Southeast Asia. If

a steady state is assumed for litter fall and decom-

position, litter fall in a year balanced with the total

litter decomposition. The study site has been de-

clared as a national park and has been under total

protection for 17 years; therefore, a steady state

could have been achieved. If C leaching from litter

accumulation and litter fractionization are negligi-

ble, the maximum litter decomposition can be

estimated to be 333 g C m-2 y-1, which accounts

for 34% of simple mean RS and 37% of simple

mean RH. As a result, the difference between the

simple mean RH of 891 g C m-2 y-1 and the litter

decomposition could be a rough estimate of annual

peat decomposition (558 g C m-2 y-1) albeit with

large uncertainties.
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The annual soil CH4 emission (Table 3) lay at

around the high end of reported values in South-

east Asian peatland (Inubushi and others 2003;

Furukawa and others 2005; Melling and others

2005a; Jauhiainen and others 2008; Hadi and

others 2012). The higher soil CH4 emission in this

study mainly resulted from the higher GWL than in

the previous studies (Figure 10C). In addition, the

higher soil CH4 emission could be partly attributed

to the clear diurnal variation in soil CH4 efflux

(Figure 3B). In the previous studies using manual

chambers, CH4 flux was measured only in the

daytime, which could have resulted in an under-

estimation for the cumulative emissions.

CONCLUSION

Soil CO2 and CH4 fluxes were continuously mea-

sured using an automated chamber system in an

undrained tropical peat swamp forest. The soil CO2

and CH4 fluxes showed an unexpected diurnal

variation with lower values during the daytime.

The diurnal pattern may be due to the mass flow of

soil gas due to thermal convection in the nighttime

and atmospheric turbulence in the daytime. De-

creased efflux in the daytime is expected to occur

especially in closed chamber on porous peat. Thus,

the chamber method may potentially underesti-

mate CO2 and CH4 effluxes from peat soils, even

when they are measured continuously. If a manual

chamber system is applied only during the daytime

like in many previous studies, more CO2 and CH4

emissions will be underestimated (Ishikura and

others 2018). The large discrepancy in annual CH4

emission arising from previous studies would partly

be attributable to such an underestimation. On

porous soils such as peat, fluxes of traces gases

should be measured continuously.

The daily mean soil CO2 and CH4 fluxes were

both controlled by GWL at the seasonal and annual

scale. In this study, soil CO2 emission was lower

and CH4 emission was higher than those in previ-

ous study, because their GWLs were lowered by

drainage. Moreover, both the soil CO2 and CH4

emissions were controlled by relative peat surface

elevation. Soil CH4 emission might be overesti-

mated if chambers were mainly set in hollows.

Therefore, to reduce the bias, it is important to

measure soil CO2 and CH4 emissions considering

the proportion of area in hollows and hummocks

equally.
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mental controls of temporal and spatial variability in CO2 and

CH4 fluxes in a neotropical peatland. Glob Chang Biol

19:3775–89.

Yagi K, Tsuruta H, Kanda K-I, Minami K. 1996. Effect of water

managment on methane emission from a Japanese rice paddy

field: Automated methane monitoring. Global Biogeochem

Cycles 10:255–67.

Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ. 2010. Global

peatland dynamics since the Last Glacial Maximum. Geophys

Res Lett 37:L13402.

Carbon Dioxide and Methane Emissions from Peat Soil

Author's personal copy


	Carbon Dioxide and Methane Emissions from Peat Soil in an Undrained Tropical Peat Swamp Forest
	Abstract
	Highlights
	Introduction
	Materials and Methods
	Site Description
	Experimental Design and Chamber Measurement
	Environmental Properties
	Data Analysis

	Results
	Environmental Properties
	Diurnal Change of Soil Carbon Dioxide and Methane Fluxes
	Seasonal Change of Soil Carbon Dioxide and Methane Fluxes
	Annual Soil Carbon Dioxide and Methane Emissions

	Discussion
	Factors Controlling Soil Carbon Dioxide and Methane Fluxes
	Diurnal Changes
	Seasonal Change

	Annual Cumulative Emissions
	Soil Carbon Dioxide Emission
	Soil Methane Emission

	Comparison with Previous Studies

	Conclusion
	Acknowledgements
	References




